
www.manaraa.com

Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

Winter 3-3-2015

Leveraging Contextual Relationships Between Objects for
Localization
Clinton Leif Olson
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of
PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Olson, Clinton Leif, "Leveraging Contextual Relationships Between Objects for Localization" (2015). Dissertations and Theses. Paper
2204.

10.15760/etd.2201

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2204&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2204&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds/2204?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2204&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.2201
mailto:pdxscholar@pdx.edu


www.manaraa.com

Leveraging Contextual Relationships Between Objects for Localization

by

Clinton Leif Olson

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science
in

Computer Science

Thesis Committee:
Melanie Mitchell, Chair

Feng Liu
Tim Sheard

Portland State University
2015



www.manaraa.com

c© 2014 Clinton Leif Olson



www.manaraa.com

Abstract

Object localization is currently an active area of research in computer vision. The

object localization task is to identify all locations of an object class within an image

by drawing a bounding box around objects that are instances of that class. Object

locations are typically found by computing a classification score over a small win-

dow at multiple locations in the image, based on some chosen criteria, and choosing

the highest scoring windows as the object bounding-boxes. Localization methods

vary widely, but there is a growing trend towards methods that are able to make

localization more accurate and efficient through the use of context.

In this thesis, I investigate whether contextual relationships between related ob-

jects can be leveraged to improve localization efficiency through a reduction in the

number of windows considered for each localization task. I implement a context-

driven localization model and evaluate it against two models that do not use context

between objects for comparison. My model constrains the search spaces for the target

object location and window size. I show that context-driven methods substantially

reduce the mean number of windows necessary for localizing a target object versus

the two models not using context. The results presented here suggest that contextual

relationships between objects in an image can be leveraged to significantly improve

localization efficiency by reducing the number of windows required to find the target

object.
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Chapter 1 Introduction

An important goal in computer vision is to be able to locate all instances of a

target object class in an image. For instance, the military may want to automatically

locate all instances of missile silos in a few million satellite images. Alternatively, a

self-driving car may need to quickly locate all pedestrians in a series of video images.

Regardless of the application, the goal is to find all the target objects in an image.

Each object instance in an image is localized by drawing a box that tightly encloses

the borders of the object. This process of finding all instances of an object class in

an image is known as object localization, or simply, localization. Most state-of-the-art

computer vision systems use an exhaustive search approach to localization, called

sliding-windows [3,4,6–8,16,18]. A downside of the sliding-window approach is that,

in a typical task, it can require a search through tens of thousands of windows to

localize each object instance, making it a rather inefficient [11]. Recently, a number

of methods propose using the context present within an image (e.g. horizon lines, sky

and ground locations, etc.) to improve localization efficiency by reducing the number

of windows considered. [2, 9, 10,17].

In this thesis, I investigate whether the context between object classes can be

learned and then leveraged to make the localization process more efficient. In partic-

ular, if the location and size of one object class instance is known, I hypothesize that

a previously learned context model can be used to reduce the number of windows

required to localize an instance of a related object class by constraining the location

and size search space for that object.

1
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1.1 Background

Over the past decade, computer vision systems have become increasingly adept

at object localization. However, current state-of-the-art computer vision systems still

perform well below that of human ability [15]. For example, if shown Figure 1.1, most

humans would easily interpret this image as an instance of the concept dog-walking

and very quickly locate the human dog-walker, the dog, and even the hard-to-see leash.

Figure 1.1: Image demonstrating the concept of dog-walking.

In contrast, most current computer vision systems would take an exhaustive ap-

proach to locating the objects in this image. Such a system might start with a small

window in the upper left corner of the image and assign a score indicating the con-

fidence of the system that a dog is present in that window. The system would then

continue this process repeatedly over the whole image with different size windows and

pick the highest scoring windows for dog locations. If the system then wanted to find

the dog-walker, this exhaustive search process would begin anew. In the end, this

system might be able to locate the dog or dog-walker but it would do so in an exhaus-

2
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tive, brute-force, kind of way. As is typical, brute-force methods are very inefficient.

Such an approach makes no effort to use the situation (i.e., dog-walking) represented

in this image to improve its search strategy. While there are rich contextual inter-

actions between the dog, dog-walker, and leash in the dog-walking situation, most

current approaches would not attempt to model these relationships, instead opting

to try window after window in a sequential, linear fashion.

The brute-force method I just described is used by most state-of-the-art systems

and is more widely known as the sliding-window approach. More formally, in the

sliding-window approach, a confidence score is computed for a fixed aspect-ratio win-

dow over many image locations and scales. The confidence score is computed by

extracting image features (e.g., pixel values, object edges, textures, etc.) from the

window and feeding them to a trained object classifier that computes the score. The

highest scoring window is then returned as the likely object location within the im-

age [11]. Since it is generally intractable to consider all locations and scales within the

image, only a small subset of windows are actually evaluated for any particular image.

Even so, the number of window samples required to localize an object can run into

the tens to hundreds of thousands [11]. If a system needs to locate instances of many

different object classes in an image, exhaustive search techniques for localization will

be unacceptably expensive.

To address this kind of problem, some promising methods employ a context-driven

localization approach where image context is used in order to improve the efficiency

of localizing objects in the image [2, 9, 10, 17]. Global image context, such as 3D

structure [10] or general scene shape [17], is used by some, while others [1] use the

local context directly surrounding an object (e.g., color contrast, object edges, etc.) to

constrain the search space. However, few approaches directly use the situation-specific

contextual relationships that exist between object classes to improve localization.

3
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When contextual relationships, spatial or otherwise, exist between object classes

in a particular situation (e.g., “dog-walking”), it may be possible to use these rela-

tionships for more efficient localization. For instance, knowing the location and size

of the person in Figure 1.1 may tell us something about where to look for an instance

of the dog object class. If the context provided by the person is able to reduce the

search space for both dog location and size, it is possible that the localization task

for the dog instance can be completed using fewer windows. This is precisely the idea

that this thesis explores.

Motivating this work is Petacat [14], a system in development by the Mitchell

Research Group that focuses on the problem of image interpretation. As one of its

initial computer vision goals, Petacat seeks to recognize image situations, with dog-

walking being the first such situation to recognize. Given a new image, Petacat’s task

is to determine if the image is an instance of a situation category it has previously

learned. In this sense, Petacat already knows what situation it is currently trying to

find and can use this knowledge to drive which objects and contextual relationships

to look for in the image. A future goal is to integrate the work presented in this thesis

with the Petacat system to help make localization efficient and scalable.

In the next sections, I discuss related work and give a high-level description of my

approach to context-driven localization.

1.2 Related Work

In this section, I describe some of the more prominent approaches to object local-

ization in recent literature.

Torralba et al. [17] use the global context of the image by computing the “gist” of

an image. This is done by pre-processing the image with a series of Gabor filters to

obtain a gist feature vector that describes the spatial layout of the image. These gist

4
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features are then used with a weighted average of linear regression models to learn

a distribution over vertical image locations for a particular object class [17]. This

distribution can then be used to focus the localization task on a narrow horizontal

band within the image through a process that Torralba et al. call location priming.

However, this method is unable to restrict the horizontal object location search space.

In contrast, the methods proposed in my thesis allow for constraining both vertical

and horizontal search space.

Elazary and Itti [5] use general saliency maps to restrict the search space prior to

localization attempts. The saliency maps are constructed using the pixel intensities,

color opponencies (e.g., green vs. red) and edge detectors at four different orientations.

Using these features, each pixel in the image is given a saliency value. Higher values

indicate likely locations of objects (of any type) in the image. The localization search

space is then constrained to the most salient areas of the image. While Elazary

and Itti’s saliency approach uses local pixel and color context, it does not otherwise

leverage spatial or size relationships in the image.

Alexe et al. [1] use what they call image “cues” to obtain a measure of “objectness”

for segmented regions of the image. These cues include multi-scale saliency maps,

color contrasts, edge densities, and superpixel straddling to combine over-segmented

image patches into groups of superpixels likely to contain an object. This effectively

reduces the search space prior to localization but only uses the local context immedi-

ately surrounding the object instead of the contextual relationships between objects

in the image.

Hoiem et al. [10] attempt to estimate the 3D structure of an image by calculating

the camera viewpoint and surface geometry. The surface geometry classifies each

pixel as belonging to the sky, ground, or vertical class (a surface sticking up from the

ground). The vertical class also has further subclasses: planar, left, center, right, non-

5
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planar solid or porous. These features are then used in a Bayesian network to estimate

prior locations and scales for various objects in the image. However, the vertical class

labeling involves considerable hand annotations for the image set. Again, no attempt

is made to use contextual object interactions in Hoiem et al.’s approach.

Perhaps most similar to my work is another approach of Alexe et al., described

in [2]. Here they use the spatial context between similar randomly selected windows

and a target object class. During training, [2] samples a large number of windows

from all training images and records their location and size within the image they were

sampled from. Features are extracted for each of these windows and a displacement

vector from the window center to the ground truth target object is calculated. To

perform localization in a new test image, a random window is chosen in the image and

its features computed. These features are compared with the windows sampled during

training to find the ten most similar training windows. The displacement vectors

from the similar windows “vote” for the location of the target object. A probability

distribution over possible image locations for the target object is then computed

from the votes using kernel density estimation. A new window is then sampled at the

highest probability location and the process repeats for a fixed number of iterations

T . The distribution over possible locations is updated with each iteration and the

window sampled on iteration T is used as the object location in the image. While

this approach does use the spatial context between regions in the image, it does not

directly use the interaction between target objects in the image. Instead, [2] uses the

spatial context between clustered groups of windows and the object of interest.

While various types of image context are used in the above mentioned approaches,

none make use of the direct contextual interactions between objects of interest to re-

strict the search during localization. As such, my focus is on learning situation-specific

context models that allow the size and location of one object to constrain the search

6
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for another related object in the image. For example, consider Figure 1.2, which

depicts a person skateboarding. Here the size and location of the person can heavily

influence the size and location of the skateboard and vice versa.

Figure 1.2: Image representing a skateboarding situation.

1.3 Summary of Experimental Approach

In this section, I present a high-level overview of my approach to context-driven

localization and define the evaluation metrics used during my experiments.

I chose the Portland Dog-Walking image corpus for the context-driven localization

task. This dataset consists of photographs of people walking dogs. The photographs

were taken by members of the Mitchell Research Group at Portland State University.

A few examples of these images are shown in Figure 1.3 and the dataset is explained

in detail in Section 2.1.

7
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Figure 1.3: Example images from the Portland Dog-Walking corpus.

The essential characteristic of this dataset is that there are two main object classes,

person and dog, that maintain similar contextual relationships throughout all the

images (i.e., the person is walking the dog).

To examine the role of inter-object context in localization, I assume that one object

has been located with a bounding box and the second object must be found (i.e., the

system must draw a bounding box around it). The context of the first object will be

used to localize the second object. In particular, a conditional probability distribution

over object locations is estimated for one object given the other. This results in a

distribution over all image pixels where each pixel has some probability of being

the center of the target object given the localized object. Additionally, probability

distributions are learned over the ratio of bounding-box heights and ratio of bounding-

box areas between objects. For instance, a probability distribution for the ratio of

dog bounding-box heights to dog-walker bounding-box heights is estimated. Given

the bounding-box height of a localized dog-walker, the height ratio distribution can

be sampled to estimate the likely height of the dog given the dog-walker height. The

probability distributions over image pixels encode the spatial context while the height

and area ratios encode the relative size context. Together, these learned conditional

probability distributions are used by my system to localize objects in new (“test”)

images.

8
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In my system, the above distributions are learned on a training set of images in

which each image contains a single dog and dog-walker. On a test image, the location

and bounding-box height and area of one object are given. The context encoded in

the learned distributions is then used to constrain the search space and window size

for the related object. Likely object locations are sampled from the learned spatial

context distribution and a window is generated by sampling from the learned size

context distribution. For each sampled window, the intersection over union (IOU)

of the sampled window and ground truth bounding-box is computed. The IOU is

a measure of the correct overlap between a predicted bounding-box and the ground

truth bounding-box of the target object (see Equation 2.3). An IOU ≥ 0.5 is a

standard measure of localization success in current literature [15]. If the IOU for the

sampled window meets or exceeds this threshold, it is used as the bounding-box for

that object instance.

To evaluate the efficiency gains of my system with respect to models that do not

use context, I compare my system with a uniform model in which image locations

and window sizes are selected uniformly. I also compare my system against saliency

models similar to those proposed by Elazary and Itti [5]. The primary quantity of

interest is the mean number of windows required to localize dogs and dog-walkers

in the Portland Dog-Walking corpus. In this thesis, I show that my context-driven

system is able to substantially reduce the mean number of windows required to localize

dogs and dog-walkers. Furthermore, I show that it is possible to combine my system

with saliency based models to make additional efficiency gains.

The rest of my thesis is organized as follows: Chapter 2 describes the Portland

Dog-Walking corpus, the methods used to learn the conditional probability distri-

butions for spatial and size context, and implementation details for each localiza-

tion model. Chapter 3 presents the results of running each localization model on

9
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the Portland Dog-Walking corpus. Chapter 4 presents a method for combining my

context-driven model with a saliency approach and Chapter 5 presents the perfor-

mance results of the combined model. Finally, in Chapter 6, I discuss the localization

performance of each model, discuss future work, and make my final conclusions.

10



www.manaraa.com

Chapter 2 Methods

In this chapter, I describe the dataset and methods used by my system to build

localization models. I also describe the localization process used for testing. Object

localization can be broken into two essential parts: location selection and window

generation. During location selection, the localization model probabilistically chooses

image locations one at a time. This is done by sampling from a probability distribution

over image locations. At each sampled location, a window is generated. The goal is

for the target object instance to be contained within the generated window. Each

model handles window generation differently, as will be described below. A target

object is considered to be correctly localized if the window has significant overlap

(IOU ≥ 0.5) with the ground truth bounding-box for that object instance.

There are three localization models under consideration: Salience, Context, and

Uniform. The Salience model uses saliency maps like those in [5] for location se-

lection and a learned distribution over relative size of object classes and images for

window generation. The Salience model is used for comparison purposes to determine

if the Context model provides additional benefits over a model that does not use con-

textual relationships between objects. The Context model I developed uses learned

conditional probability distributions over image locations for choosing possible object

locations. For window generation, probability distributions over relative object sizes

(i.e., dog size vs. dog-walker size) are sampled to obtain the window size parameters.

Finally, the Uniform model serves as a baseline for performance comparison purposes.

As its name implies, the Uniform model takes a uniform approach to both location

selection and window generation.

11
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The rest of this chapter describes the dataset used for training and testing, each

of the model implementations, and the localization process used during testing.

2.1 Portland Dog-Walking Image Corpus

I use the Portland Dog-Walking image corpus for training and testing all models

in this work. The corpus consists of 562 dog-walking images of various aspect-ratios

(421 training, 141 testing). Each image contains a single dog-walker and dog, but

may have multiple occurrences of other objects (people, bicycles, etc.). The training

images are used to learn object location and window size probability distributions.

Test images are used only for object localization and kept strictly segregated from

training data. Each image has a corresponding label file that specifies the ground

truth bounding-box height and width for both dogs and dog-walkers. All photographs

in this corpus were taken by members of the Mitchell Research Group from various

viewpoints, times of day, and orientations, using multiple camera types. Image labels

are manually annotated by members of the group using a web-tool that automatically

generates the corresponding label file.

2.2 Salience Model

I use Elazary and Itti’s salience model [5] as a non-context-driven baseline with

which to compare context-driven models. According to this salience model, the most

salient areas of the image are thought to be the most likely locations for objects. In

particular, given an image, the salience model computes 42 types of features based on

edges, color, and contrast, at several difference scales. These features are computed

at each location in the image, producing 42 saliency maps. The maps are then

combined into a single saliency map for the image, as described in [5]. The output is

12
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a probability distribution over locations in the image, where the most salient locations

have the highest intensity (see Figure 2.1). Note that the model implemented in [5]

does not perform any learning on training data; the salience of a given input image

location depends only on simple features directly computed from the image itself.

(a) Test image (b) Saliency map

Figure 2.1: Original image (a) and saliency map (b), where the most salient (i.e.,
brightest) pixels in (b) represent regions of interest in (a) that are likely to belong to
objects.

All saliency maps for this model are generated using Max Quinn’s Matlab imple-

mentation of Elazary and Itti’s algorithm [5]. In my system, I use the saliency maps

to perform location selection and I extend the model by implementing a window

generation method, as described below.

While an absolute location prior could have been used

2.2.1 Salience Model Location Selection

Location selection for the Salience model is straightforward. Given a test image,

my system computes the saliency map from the image features as described in [5].

The resulting saliency map is interpreted as a probability distribution over image

13
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locations, where the most salient locations have the highest probability of belonging

to an object of any class. During localization, likely object locations can be sampled

directly from the saliency map distributions.

For example, suppose the task is to localize the dog in Figure 2.1a. To pick a

new location in the image to look for the dog, an image location would be sampled

directly from the saliency map in Figure 2.1b, where the highest intensity pixels have

the highest probability of being chosen.

To be precise, let O denote any object class (e.g. dog-walker, dog, leash, etc.) and

let Oxy be the event that the pixel located at image coordinate (x, y) is the center

of an instance of the object class O. Additionally, let θs represent the salience map

used to generate saliency values at each image pixel. For an N ×M input image, the

probability distribution over all pixel coordinates (i, j) is:

Pr(Oij|θs) = Gij i = 1 . . . N, j = 1 . . .M (2.1)

where Gij is the saliency value at index (i, j) of the image saliency map.

2.2.2 Salience Model Window Generation

After sampling an image location from Pr(Oxy|θs), a window must be generated.

Recall, the goal is for the window to have significant overlap (IOU ≥ 0.5) with the

ground truth bounding-box of the target object instance. Inherently, the approach

used in [5] provides no method for window generation. To deal with this issue, I

decided to have the Salience model learn a probability distribution for window sizes

from the observed ratios of object bounding-box height and area with respect to image

height and area.

Specifically, for a training image, let Oa and Oh represent the target object ground
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truth bounding-box area and height, respectively. Similarly, let Ia and Ih denote the

image area and height, respectively. My system estimates two probability distribu-

tions, Pr(β) and Pr(η), from the training images, where β = Oh/Ih and η = Oa/Ia.

This is done by observing β and η for all training images and using the Matlab func-

tion ksdensity [13] to estimate both Pr(β) and Pr(η). To generate a new window,

W , with a sampled location as its center, my system samples a new β and η from

their respective distributions and computes the window height, Wh, and area, Wa, as

follows:

Wh = β ∗ Ih

Wa = η ∗ Ia

Once the window has been generated, the IOU of the window and the ground truth

object bounding-box can be computed to determine if the object has been localized.

2.3 Context Model

The Context model I developed leverages the known location and bounding-box

of one object class instance to probabilistically choose a possible image location and

size for a related target object class. In my system, the two object classes of interest

are dog and dog-walker. As an example, suppose we have identified the location and

have specified a bounding-box for the dog-walker as depicted in Figure 2.2. The task

of the Context model is now to localize the dog in this image using the context of the

dog-walker.

Similar to the Salience model, the Context model uses probability distributions

over image locations and window size during localization, but the methods used to

obtain them differ from the salience approach. Specifically, the context between dogs
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and dog-walkers observed in training data is leveraged to generate the distributions

over locations and window size. The next sections explain how these distributions are

learned from the training data. Note, throughout this chapter, I will assume that the

dog-walker has been localized and the dog is the target object for localization. The

reverse process is completely analogous.

2.3.1 Context Model Location Selection

In the Context model, location selection is conditional on the known location of

one of the object classes. For example, in Figure 2.2, the dog-walker has been local-

ized. Given the location of the dog-walker, the Context model will probabilistically

choose possible dog locations by sampling from a learned image location distribution.

Context location distributions differ from salience map distributions in that the con-

text distributions are object-specific and conditional on the location of some other

object class. The distributions are object-specific because a different distribution is

used for each object class (e.g. dog, dog-walker, etc.).
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Figure 2.2: An image where the dog-walker has been localized.

My approach to learning these conditional probability distributions is straightfor-

ward. For each training image, the displacement from the center of the dog-walker

bounding-box to the center of the dog bounding-box is calculated and represented

as a point (x, y) where the center of the dog-walker is considered the origin. The

point (x, y) is then normalized by the height1 of the dog-walker bounding-box so that

points from different images will be on the same scale. More formally, let N be the

number of training images; (dx,dy) be the coordinate of the dog center; (wx,wy), be

the coordinates of the dog-walker center, and wh be the height of the dog-walker

bounding-box. A collection of displacement points for the ith image are calculated as

1Height is chosen because it more naturally captures the distance of an object from the camera.
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follows:

(x(i), y(i)) =

(
d
(i)
x − w(i)

x

w
(i)
h

,
d
(i)
y − w(i)

y

w
(i)
h

)
i = 1 . . . N (2.2)

A plot of all the points (x(i), y(i)) from the training images can be seen in Figure

2.3, where the origin represents the center of the dog-walker and the axes are the

normalized distances in pixels from the dog-walker to the dog.

Figure 2.3: Plot of dog locations relative to dog-walkers from the training set. The
origin represents the center of the dog-walker bounding-box. Figure best viewed in
color.

The grouping of points in the plot make it clear that there is a non-random spatial

relationship between dogs and dog-walkers.

Of course, a collection of points is not a probability distribution. To resolve this
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problem, a probability distribution must be estimated from the points computed in

Equation 2.2. To do this, a distribution over image locations is estimated with the

Matlab function p2kde, written by Max Quinn. The p2kde function takes as input a

collection of points and performs kernel density estimation to approximate the two-

dimensional probability distribution from which the points were likely sampled. For

example, Figure 2.4b visualizes the estimated probability distribution obtained from

the points in Figure 2.4a.

(a) Point samples (b) Estimated distribution

Figure 2.4: Example of kernel density estimation using Matlab function p2kde. (a)
is a collection of points represented as an image. (b) is the resulting probability
distribution. High intensity (bright) locations correspond to high probability.

From the process described above, two conditional probability distributions over

image locations are learned. The first, Pr(dxy|wxy), is the conditional distribution

of dog locations given the dog-walker location, where dxy and wxy denote the dog

and dog-walker locations, respectively. The second learned conditional distribution,

Pr(wxy|dxy), is over dog-walker locations, given the dog location.
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For a new image with the dog-walker localized, possible dog locations are selected

by sampling points from the learned conditional probability distribution, Pr(dxy|wxy).

If the dog was the localized object, then possible dog-walker locations would be sam-

pled from Pr(wxy|dxy) instead. As in the Salience model, once a point is selected,

a window must be generated in order to compute the IOU. The window generation

method for the Context model is described next.

2.3.2 Context Model Window Generation

Window generation for the Context model is similar to that in the Salience model

except I leverage the size relationships between the dog and dog-walker object classes

rather than the size relationship between the object and image. Specifically, the ratio

of ground truth bounding-box area and height between dogs and dog-walkers is used

to estimate two probability distributions for window size.

The first distribution is over the height ratios between dogs and dog-walkers. Let

dh and wh be the height of the ground truth bounding-box for the dog and dog-walker,

respectively. Also, let γd = dh/wh be the ratio of dog height to dog-walker height.

A probability distribution, Pr(γd), over the height ratio is estimated by observing all

height ratios in the training set and using Matlab’s ksdensity function [13] to perform

one-dimensional kernel density estimation on the observed ratios. The distribution,

Pr(γw) for the ratio of dog-walker to dog heights is similarly estimated.

The second distribution learned is over the area ratios between dogs and dog-

walkers. Let da and wa be the ground truth bounding-box area for dogs and dog-

walkers, respectively. Let αd = da/wa be the ratio of dog area to dog-walker area.

The distribution over area ratios, Pr(αd) is also estimated by observing all αd in the

training set and obtaining an estimate of Pr(αd) from the ksdensity function. Again,

the distribution for dog-walker to dog area ratios, Pr(αw), is estimated in a similar
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way.

The window size distributions just described can be used for localization on a new

image to probabilistically generate window height and area based on the context of

the localized object. For example, given a new image where the dog-walker has been

localized, the Context model samples γd and αd from their appropriate distributions

and computes the window height, Wh, and area, Wa, as follows:

Wh = γd ∗ wh

Wa = αd ∗ wa

Generating candidate windows for dog-walkers is accomplished in the same way,

with the appropriate adjustments to the sampling distributions.

2.4 Uniform Model

The Uniform model serves as a null comparison model for localization on the

dog-walking dataset. For the Uniform model, the probability distribution for object

locations is uniform (i.e., all object locations are equally likely). During location

selection, an image location is simply selected uniformly from all image locations.

Window generation in the Uniform is very simple. A uniform distribution over

the height ratios β between the target object class and the image is obtained by

observing the minimum and maximum β in the training set and using those values

as the extreme for the distribution. The uniform distribution for area ratios η is

computed in a similar way. On a new image, a window W is generated by picking

a β and η uniformly from their respective distributions and computing the window
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height Wh and area Wa as follows:

Wh = β ∗ Ih

Wa = η ∗ Ia

where Ih and Ia represent the image height and areas, respectively, as in the Salience

model.

2.5 Localization Procedure

As I described above, the goal of object localization is to specify the location of

the target object in an image by drawing a bounding-box around the object. The

standard measure of an accurate localization is the intersection over union (IOU)

metric [15]. Specifically, an object is considered successfully localized if the IOU is

greater or equal to 0.5. IOU is calculated as:

IOU(Bgt, Bp) =
area(Bgt ∩Bp)

area(Bgt ∪Bp)
(2.3)

where Bgt and Bp are respectively the ground truth and predicted bounding boxes. As

an example, Figure 2.5 shows some predicted bounding-boxes and the corresponding

IOU values.
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(a) IOU = 0.38 (b) IOU = 0.51

(c) IOU = 0.72

Figure 2.5: Example bounding-box predictions with IOU values. Yellow boxes are
ground truth and red are window predictions. Figure best viewed in color.

Throughout this section I assume the target object is the dog. The process for

localizing the dog-walker is essentially the same. Additionally, for the Context model,

it is assumed that the dog-walker has been localized and we know its bounding-box

size.

The localization process has two steps: location generation and window genera-

tion. The first step is to sample a location from one of the model probability distri-

butions over image locations. Figure 2.6 illustrates sampling from the Context model

distribution. By sampling a point from the distribution in Figure 2.6b, we obtain
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a point in the test image, shown in Figure 2.6a, that is thought likely to locate the

center of the dog.

This location selection procedure is identical for all of the models. That is, points

are sampled from the respective model probability distributions to generate points of

interest that may locate the center of the target object in the test image.

(a) Test image (b) Sampled points (c) Plotted points

Figure 2.6: An example of location sampling. (a) is the image under consideration,
(b) shows five points sampled from Pr(dxy|wxy), and (c) shows the points plotted on
the test image. Figure best viewed in color.

Once a location has been sampled for a possible dog location, a window is gen-

erated. The sampled locations serve as the center of the window. Window size is

determined by sampling from the appropriate size distributions as described above

for each model.

Figure 2.7 illustrates an example of window generation for the Context model.

The red point is the sampled location for a possible dog location relative to the

dog-walker. The three windows centered on the sampled location were generated by

sampling height and area ratios from Pr(γd) and Pr(αd) distributions, respectively.

Finally, the actual height and area for each window is computed as described in

Section 2.3.2 using the localized dog-walker height.
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Figure 2.7: An example of window generation for Context model. Here the red point
has been chosen as a possible location for the dog. Three windows are shown where
the area and height parameters are calculated by sampling from Pr(αd) and Pr(γd).
Figure best viewed in color.

Finally, for each point and window sampled, I calculate the IOU for the ground

truth dog bounding-box and the generated window. If IOU ≥ 0.5, the dog has been

successfully localized and, if not, the process can begin anew by sampling a new point

and generating a new window from the appropriate distributions.

It is worth noting that no classifiers for dogs or dog-walkers are used in my local-

ization process. I chose to isolate and evaluate the merits of these localization models

directly. Using window classifiers would introduce errors into my results, making
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it difficult to determine the true contribution of context for object localization. In

practice, any object window classifier could be used in the process explained above

to assign a score for each window.
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Chapter 3 Results

In this chapter, I report the dog and dog-walker localization performance results

for the Uniform, Salience, and Context models on 141 test images from the Portland

Dog-Walking corpus. All models were trained on 421 images from the same corpus.

Localization results are obtained by sampling locations from the specified model prob-

ability distribution and generating a window for the target object at each location

until an IOU ≥ 0.5 is reached or 5000 locations have been sampled. If the target

object has not been localized after 5000 window samples, the model is considered to

have failed the localization task for that image. The window generation method is

dependent upon the type of localization model under consideration. The entire pro-

cess described above is repeated ten times for each model to yield an average number

of windows required to localize the target object in each test image.

The graphs in this chapter plot the percentage of the target object class that

was successfully localized against the mean number of windows sampled to localize

that percentage of targets. For example, Figure 3.1 plots the model results for the

dog localization task. If we choose a window threshold along the x-axis, say 1000,

the y-axis tells us what percentage of dogs, across all test images, were successfully

localized within an average of 1000 window samples. Each plot also contains error

bars that extend one standard deviation above and below the graph line at periodic

intervals.
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3.1 Dog Localization Task

Figure 3.1 plots the performance results of the Uniform, Salience, and Context

models on the dog localization task. The Context model clearly localizes a greater

percentage of dogs than either the Uniform or Salience models for all window sample

thresholds. In particular, the Context model successfully localizes at least 80% of

the dogs within 500 box evaluations while the next best model, Salience, has only

localized around 20% of dogs in the test images.

Figure 3.1: Localization performance plot for Uniform, Salience, and Context models.
The y-axis plots the percentage of dogs in all test images that are successfully localized
within the mean number of sampled windows plotted along the x-axis. Figure best
viewed in color.

The Salience model also significantly outperforms the Uniform model for nearly

all window sample thresholds. However, it appears that the Uniform model is able
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to localize a greater percentage of dogs than the Salience model for window sample

thresholds less than 300.

As an overall quantitative measure of model performance on the dog localization

task, I calculate the mean and standard deviation of the number of window samples

required to successfully localize a single dog instance for each model. Table 3.1 reports

these results.

The best performing model for dog localization across all metrics is the Context

model, with a mean of 352.7 window samples required for a successful dog localiza-

tion. This is a reduction of 85.8% over the Uniform model and 74.1% over the Salience

model for mean window samples. The Salience model is also able to substantially

reduce the mean window samples versus the Uniform model, requiring only 1363.7

samples on average, a reduction of 45.1% over the Uniform model.

Dog Localization

Model Mean Windows StdDev

Uniform 2485.6 1628.5

Salience 1363.7 1230.9

Context 352.7 748.9

Table 3.1: Performance of the Uniform, Salience, and Context models on dog lo-
calization task. The mean windows column represents the mean number of window
samples required to successfully localize a single dog instance, averaged over all test
images, for ten independent trials.

3.2 Dog-Walker Localization Task

The results for the dog-walker localization task exhibit some substantial differences

from those for dog localization. Figure 3.2 plots the results over 5000 window samples.
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Here, the Context model is able to localize a greater percentage of dog-walkers for

all window thresholds, however, the improvement over the Salience model is less

pronounced. For the 500 window threshold, the Context model successfully localizes

approximately 90% of the dog-walkers in all test images, while the Salience model

localizes roughly 82%. Both the Context and Salience models localize a significantly

greater percentage of dog-walkers than the Uniform model across nearly all window

sample thresholds.

Figure 3.2: Dog-walker localization performance up to 5000 window samples. Figure
best viewed in color.

Table 3.2 reports the mean and standard deviation of the number of window sam-

ples required to successfully localize a single dog-walker instance. All models require

significantly fewer window samples on the dog-walker localization task in compari-

son to dog localization. The Context model requires the fewest windows at 207.7,
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a reduction of 81.8% over the Uniform model and 40.7% over the Salience model.

The Salience model again requires fewer window samples than the Uniform model at

350.5, a reduction of 69.3% over the Uniform model.

Dog-Walker Localization

Model Mean Boxes StdDev

Uniform 1141.4 1269.5

Salience 350.5 628.1

Context 207.7 540.0

Table 3.2: Performance of Uniform, Salience, and Context models on dog-walker
localization.

In summary, for both localization tasks, the Context model requires significantly

fewer window samples on average to successfully localize the target object than the

Uniform or Salience models. Additionally, all three models require fewer window

samples on average for dog-walker localization than for the dog-localization task.

31



www.manaraa.com

Chapter 4 Combining Context and Salience

In this chapter I present a methodology for combining the Context and Salience

models. Because the Context and Salience models both use a probability distribution

over image locations to select possible object locations, I was interested in seeing if

the performance of Context model improves by combining it with the Salience model

approach. To do this, I combine the probability distributions over image locations

from both models as illustrated in Figure 4.1.

(a) Test image (b) Salience distribution

(c) Context distribution (d) Combined distributions

Figure 4.1: An illustration of the result (d) from combining the Context and Salience
model location distributions. (b) and (c) are the distributions obtained from the
Salience and Context models, respectively, for the image in (a).
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Combining the Context and Salience model location distributions is done in a

simple way. The probability distribution, Pr(dxy|wxy), computed as described in

Section 2.3, is simply point-wise multiplied with the salience distribution Pr(Oxy|θs).

Specifically, since the discrete Context and Salience location distributions are both

the same dimensions (i.e., the dimensions of the image under consideration) and

are represented as a probability matrix, the combined distribution for dog locations,

Pr(dxy|wxy, θs), is calculated as follows:

Pr(dij|wxy, θs) =
Pr(dij|wxy) Pr(Oij|θs)∑
ij Pr(di,j|wxy) Pr(Oij|θs)

i = 1 . . . N, j = 1 . . .M (4.1)

where the denominator is simply a normalization term to make the distribution sum

to 1. The result of Equation 4.1 is visualized in Figure 4.1d for the test image in

Figure 4.1a.

During localization, Pr(dxy|wxy, θs) can be sampled in the same way as the Context

model to generate possible object locations. Window generation also is performed the

same way as that described for the Context model.

Next, I present the results for the combined model in comparison to the Context

model.
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Chapter 5 Combined Model Results

In this chapter, I present the localization performance results for the combined

Context and Salience model. For clarity, I will refer to the combined model by the

title Combined. I also include the results for the Context model alone for comparison

purposes.

5.1 Dog Localization Task

Figure 5.1 plots the performance results of the Combined and Context models

on the dog localization task. The Combined model slightly outperforms the Context

model for most window threshold values. For instance, at a threshold of 500 windows,

the Combined model has localized around 90% of the dogs while the Context model

has localized a little over 80% of the dogs in the test set.
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Figure 5.1: Localization performance plot for the Context and Combined models on
dog localization task. Figure best viewed in color.

As was done for the previous model results, I calculate the mean and standard

deviation of the number of window samples required to successfully localize a single

dog instance for the Combined model and present them in Table 5.1.

The Combined model makes slight improvements in the mean number of windows

required to successfully localize a dog. In particular, the Combined model requires

only 266.7 windows on average, for an improvement over the Context model of 24.4%.
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Dog Localization

Model Mean Windows StdDev

Context 352.7 748.9

Combined 266.7 613.2

Table 5.1: Performance of the Context and Combined models on the dog localization
task. The mean windows column represents the mean number of window samples
required to successfully localize a single dog instance, averaged over all test images,
for ten independent trials.

5.2 Dog-Walker Localization Task

Figure 5.2 plots the performance results of the Combined and Context models

on the dog-walker localization task. For dog-walker localization, the Combined and

Context models have very similar results. In fact, it is difficult to say which model

performs best for various window thresholds. For instance, at a threshold of 500

window samples, both models are able to localize around 90% of the dog-walkers

successfully.
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Figure 5.2: Localization performance plot for the Context and Combined models on
dog-walker localization task. Figure best viewed in color.

Table 5.2 reports the mean window samples required to successfully localize a

dog-walker on the test image set for both the Combined and Context models. Again,

the performance between the two models is very close, with the Combined model

requiring slightly fewer window samples, 192.2, versus the Context model. This is a

small improvement approximately 7.5% over the Context model for this task.
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Dog-Walker Localization

Model Mean Windows StdDev

Context 207.7 540.0

Combined 192.2 589.9

Table 5.2: Performance of the Context and combined Context and Salience models
on the dog-walker localization task.

In summary, the Combined model performs slightly better than the Context model

alone for the dog localization task. However, the results for the dog-walker localization

task are nearly equivalent for both models. As was seen with the Uniform, Salience,

and Context models, the Combined model required fewer window samples on average

for the dog-walker localization task than for the dog localization task.
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Chapter 6 Discussion

In this thesis, I presented the Context object localization model that leverages the

contextual relationships between dogs and dog-walkers in the “dog-walking” situation

to constrain the search space for object location and size during localization. There

are two ways in which the contextual relationships between dogs and dog-walkers are

used in the Context localization model I developed. First, the location context of one

object is used to restrict the search space over possible target object locations via

learned conditional probability distributions. Second, the size context of one object

is being leveraged to constrain the search space for target object window sizes. I also

presented a method for combining Salience models with the Context model to further

constrain the search space over object locations.

In the next sections, I discuss the results of the Context and Combined models,

highlight a few potential drawbacks of the Context model, mention future work, and

finish with my conclusions.

6.1 Context-Driven Localization

The Context model I created in this work directly leverages the location and

size context of dogs and dog-walkers to substantially reduce the number of window

samples required for a successful object localization. As we can see in Figures 3.1

and 3.2, the Context model is able to successfully localize a much greater percentage

of target objects with substantially fewer window samples than either the Salience

or Uniform models. For example, on the dog localization task, the Context model

successfully localizes at least 80% of all dogs in test images in as few as 500 window
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samples. The Salience model would require at least 2000 window samples to achieve

the same localization percentage and the Uniform model would require 5000 or more

windows. A similar pattern is seen for the dog-walker localization results.

From Tables 3.1 and 3.2, we can also see that the average number of windows

required in the Context model to successfully localize either a dog or dog-walker in

a test image is significantly lower than the Uniform and Salience models, suggesting

that the use of context in localization is able to substantially reduce the number

of windows required for a successful localization. These reductions in the number

of windows required translate to substantial efficiency gains. Recall that a sliding-

window localization method can require a search over tens of thousands or more

window samples to localize a single object class. These results also suggest that using

object specific context can yield greater localization performance benefits than an

object-neutral method like that of the Salience model.

The significant improvement of the Context model over the Uniform model is

largely the result of how the Context model constrains the search space over image

locations during localization. For instance, in Figure 6.1, the context-driven proba-

bility distributions are able to constrain the possible dog locations to a fraction of

the total image area.

Figure 6.1: Illustration of Context probability distributions overlaid on three test
images. Figure best viewed in color.
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The constrained search space and the fact that the distributions typically have

high density over actual target object locations, results in the substantial reductions

in window samples.

It is for similar reasons that the Combined model is able to further reduce the mean

number of window samples required during localization over that of the Context model

alone. For example, Figure 6.2 shows the Context and Combined model probability

distributions for the same test image. The Context location distribution in Figure

6.2b has been suppressed in the least salient areas so that the dog location search

space has been even further constrained to the most relevant parts of the image.

(a) Test image (b) Context distribution (c) Combined distribution

Figure 6.2: A comparison of the Context and Combined probability distributions for
the same test image.

However, the reduction in the object location search space from the Context dis-

tribution to the Combined distribution is not nearly as significant as the reduction

in going from a uniform distribution to the Context distributions. This explains why

the percentage window sample reduction (24.4% and 7.5%) is not nearly as large

as that seen for the Context versus the Uniform model (85.8% and 81.8%). While

the reduction in window samples for the Combined model over the Context model is

relatively small, it is still an interesting result as it suggests that localization models

that use probability distributions over image locations can be combined for better

localization results.
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Even though the Context model presented here performs quite well, it is not

without its drawbacks. First, this method depends upon the successful localization

of one of the two object classes from which the probability distributions were learned

(e.g. dog or dog-walker). This creates a sort of chicken-and-egg dilemma because

the localization model can not be applied until one of the objects has been localized.

However, it may be possible to first apply the Salience model to initially localize one

of the objects and then use the Context model to substantially reduce the number of

window samples required to localize related objects. The end result would still likely

be a net-savings in window samples. Exploring this idea is left to future work.

A second drawback of the Context model is that it does a poor job of dealing

with outliers. In particular, if the object we are trying to localize lies far outside of

the high-density areas of the probability distribution, it is extremely unlikely that

we would ever sample that object location from the distribution. For example, the

dog in the test image shown in Figure 6.3 was never successfully localized by the

Context model during my tests. However, the Uniform model was able to localize

this dog successfully within the 5000 window sample threshold. A possible remedy

to this issue is to suppress locations that have already been sampled. As the high

density areas become suppressed, choosing a location at a low probability location

becomes more likely. This type of approach may allow the Context model to more

easily localize objects that do not adhere closely to the learned location distributions.
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Figure 6.3: Dog outlier. Figure best viewed in color.

Finally, the Context model is designed to leverage the contextual relationships

between object classes involved in some type of image situation (e.g., dog-walking,

skateboarding, etc.). If the objects of interest do not have any such relationships,

there would likely be little value in using the Context model for that localization

task. However, in situations where the objects of interest do have location and size

relationships, the results here indicate the Context localization model would perform

reasonably well.

Despite the drawbacks present in the Context model, the substantial reduction in

window samples for localization over the Uniform and Salience models indicates that

there is value in using context-driven probability distributions to improve localization

efficiency.

6.2 Future Work

A primary future goal for the work presented in this thesis is the integration of the

Context model into the Petacat computer vision system. When presented with a new
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image, Petacat will attempt to determine if the image is in various situation categories.

Assuming the situation category currently being considered is dog-walking, Petacat

will first try to localize one of the relevant objects for this situation (e.g., dog, dog-

walker, leash, etc.). Once that object is found, other objects belonging to that the

dog-walking situation will need to be localized. This is the point of integration for

my Context model. At this stage of analysis, the Context model could be applied

to efficiently localize the remaining objects belonging to the dog-walking situation, if

they are present in the image.

While Petacat is the primary motivation for this work, it can be extended in a

number of other ways. For instance, the current Context model requires that the

target objects that share a contextual relationship be defined in advance. Ideally,

the model would be able to learn these relationships in an unsupervised manner. In

doing so, the model could automatically learn pairs, or groups, of objects that share

a contextual relationship in a training set and leverage this information for faster

localization on test images.

It would be interesting to explore the possibility of using the Context model

to resolve class labelings of candidate windows within an image. For example, if

two candidate windows in a test image were classified as a dog and dog-walker, the

Context probability distribution over object locations could be applied to determine

if windows adhere to typical locations encoded in the distribution. This would make

it possible to decrease or increase the confidence in a candidate window proportional

to the adherence of the windows to the learned contextual relationships.

Another future step would be to incorporate real window classifiers into the Con-

text model. Currently, the Context model assumes an oracle window classifier. In

theory, any window classifier could be used with this model. It is possible that

using real window classifiers could further constrain the image search space during
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localization by updating the probability distributions over image locations based on

the window score for each sampled location. Such an implementation may reduce

repeated evaluations of locations that are unlikely to contain the object.

Of course, an obvious drawback of the object context models presented in this

work is that one of the objects must be localized prior to applying the model. The

downside of this is that other methods must be used to localize the first object.

Because of this drawback, further investigation on how such context driven models

can be incorporated with other localization models that constrain search without the

object context (e.g., the salience models) is necessary.

6.3 Conclusions

Using context for object localization has been shown to improve both localization

accuracy and efficiency through various approaches [2, 5, 9, 10, 17]. Here, I investi-

gated how the contextual interactions between two objects, dogs and dog-walkers, in

a situational relationship can be leveraged to constrain the search space over object

location and window size during the localization task. I presented the Context local-

ization model and evaluated it against the Uniform and Salience models. For both

dog and dog-walker localization tasks, I have shown that the Context localization

model is able to make sharp reductions in the mean number of windows sampled

during localization versus the other models. Additionally, the combination of models

using probability distributions over image locations can be combined to yield greater

performance benefits than any individual model alone. The ability of the Context

model to constrain the object location and size search space to reduce window sam-

ples suggests that the contextual interactions between objects can be a valuable tool

for boosting localization efficiency.
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